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An algorithm based on the linearization method [1] is proposed for the num-
erical solution of problems of optimization of elastic shells of revolution sub-
jected to static load. Shells with fixed parameters are calculated by the
finite-difference method. Procedure for determining gradients of functionals
obtained by solving equations of shell equilibrium, and of load gradients at
stability loss by varying shell parameters is presented. Examples are given of
optimization of the shape of shells of revolution,

1, Equations of equilibrium and stability of shells of revolu-
tion and methods of their solution, Equations of equilibrium and stability
of elastic shells of revolution subjected to axisymmetric load and an algorithm for their
solution based on the investigations in [2] are presented below. The self - conjugate
boundary value problems of equilibrium and stability are considered.

The relations between increments of strain e;;, curvature k;j, and angles of ro-
tation B; (i, j = 1, 2) of shell elements to increments of displacements ¥, v, and w
at stability loss are assumed to be of the form
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where s is the length of the meridian arc; @ is the angle of rotation of the meridian
plane about the axis of revolution taken as a coordinate on the parallel; a is the dis-
tance of the shell middle surface from the axis of revolution; @ is the angle between a
normal to the middle surface and the axis of revelution ; R;and R, are radii of curvature ;

4, U, and w are increments of displacements along the meridian, the parallel, and in
the direction of the outward normal to the shell middle surface, respectively ;  is the
eigenvalue representing external load; 1 is the angle of rotation of a shell element
about a parallel in the precritical state when A = 1. Here, and in what follows sub -
scripts 1 and 2 denote quantities at shell cross-sections orthogonal to the meridian and
the parallel, respectively; £ is Young's modulus, v is Poisson's ratio, and & is the
shell thickness .
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The increments of stress and moments at stability loss satisfy the following varia -~
tional equations:
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where § is the sign of variation; N;;, M;;, and Q; (i,j = 1, 2) are increments
of stress , moments , and shear forces, respectively , multiplied by the distance @ from
the shell axis of revolution; Y%; and Y2 are stresses in the subcritical state , whenh = 1,
multiplied by a; the asterisks denote values of respective functions when s = ( or
s = 8 (i, e, are either specified and equal zero or unknown).
In conformity with Hooke's law we set

ery = A (Nyy —VNy), €35 =A (Nog — VNy), e = 4 (1+v)Ny (1.3)
A = (aEh)™t

ky = B(Myy —VvMzs), kys = B (My, — vMy,), ks = B (1+v) My,
B = 12 (aEhr®)™!

Let us formulate conditions at the closed top of the shell of revolution, where § ==

a = 0, in the absence of concentrated forces there. In that case we must delete in
the right-hand side of the variational equation (1,2) the integral of ¢ when s = 0.

Carrying out the separation of variables we substitute into Eqs,(1.1) —(1.3) the

expansions of functions U, W, Py, €1, €22, K11y K22, Nyyy Noay My, Maz,ana Q, and

v, Ba, €12, K12y Ny3, M2, and QgiinFourierseriesin cos m@and sin mg respectively,

m=0,1,2,..)
It follows from (1, 2) that
o0
lim ) [NVi1,0%,+(Vyg, m B My, i) 00 + (Qr,m + (1.4)
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where the subscript m denotes coefficients at cos m¢ and sin mq in Fourier series
of respective functions,
The variations 8u,,, 8., dw,, and O8fy,m are not independent. At any arbi-
trary point of the shell the following relationships are satisfied:
u == —§sin0 - (Ecos @ + nsin@)cos B, v =1 cos p—Esin@ (1,5)
w = L cos O 4 (Ecos ¢+ 7 sing)sin 6



Optimization of elastic shells of revolution 8317

where &, M, and § are increments of displacements of the shell middle surface at sta-
bility loss in the directions ¢ = 0 and @ == 7/ 2 in the plane orthogonal to the
shell axis of revolution and along that axis, respectively, Passing in (1.5) to limit with

a— 0 and s —> 0 we obtain owing to the continuity of displacements the same
formulas for the shell top, where s = 0 and E, v, and { are independent of angle 9.

Let us further assume that the angle between opposite meridians at the shell top re-

main unaltered in the course of deformation. Then the angle of rotation of a shell ele-
ment B, (s, @) about the parallel satisfies at the limit §— 0 the condition §, (0,

¢) = —p; (0, ¢ + =) and, consequently, its expansion in Fourier series contains
only odd terms

PO, @)= 3 (Brmcosmg 4 Py, msinme)
m (1.6)

IR T8 R

When s =0 ,owing to the arbitrariness of variations of &, £, and By,m (m =
1,3,5,...),from(1,4) —(1.6) we have the relationships

g €0S O + wesin® = 0, Q,,00080 — Nyy,05in0 =0, Be=0 (m=0)

Uy 400088 =0, Nyy,,0080 — Nygyy + Qy,18in 0 - -?2—(—1%-» — %—) X
1 2
A'Il'lyl _ O
w1+vlsin9:0, Mn,l:O (m == 1) (1.7)

um:Um:wm:O (m=‘2,3,4,5,.,.)
Pom=0 (m=246....) Mum=0 (m=3517...)

which provide boundary conditions for the equations of stability with separated variables
when s = 0.

Note that when m = 1 ,the second of conditions (1,7) is also implied by that
the principal vector of forces acting at the boundary of the small circular neighborhood
of the shell top projected on a plane orthogonal to the axis of revolution is equal zero,
namely by the equality

2§ {[ (Ql 4+ %ﬁ) sin 0 -+ Ny cos B]cos 9 — (Nm =+ 731"” Mm)Sin (p}dq)=
0

171 1
n [Qm sin 0 4 Ny €080 — Nyg -+ 5 (-g; - —E;) 5412,1] =0

At the smooth (not conical) top of the shell of revolution § = 0, R, = R:
when s = (), and conditions (1, 7) assume the form

=0, Qu=0, Po=0 (m=0) (1.8)
Ul—}‘vl’:ov "Vnal““NIZyl::O’ wy =0, M11,1:0 (m =1)

which for m = 2, 3,4,. . . remains unchanged.

Equations for the precritical state are derived from Eqs, (1.1) —(1.8) by cancel-
ling in them terms that contain the eigenvalues A, and by taking u, v, w, B, e,
kij, Nij, My, and 'Q; (i, j = 1, 2) as functions in the precritical state and not as
their increments, and adding to the right-hand side of Eq, (1.2) the work of external
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forces in the variations of displacements

21 S

5 ‘f (p1du + p2bv + pydw) a ds dg
0

0

where Pi1, P2, and pPj are components of external load, In the axisymmetric state
V=P =€ =Fkp=Np=Mp=0Q,=py=0.

The equations of the precritical state and the equation of stability of the shell after
the separation of variables are approximated on a nonuniform network of nodes using
the finite-difference equations given in [2].

The critical (bifurcation) loads at loss of stability for various numbers m = 0,

1,2, ... of waves on a parallel are determined as the lowest, in absolute value,
eigenvalues A of the finite-difference equations of stability obtained by the method of
iterations [ 3] for respective numbers m .

If eigenvalues of different signs are present and the calculated eigenvalue corres -
ponds to a load in opposite direction (of opposite sign) to be considered one, the eigen-
value of required sign may be obtained by a shift of the eigenvalue spectrum [3]. In
the numerical examples presented below the eigenvalues of the lowest absolute value,
determined by the method of iterations, related to a load of specified direction, and it
was not necessary to shift eigenvalues ,

Since the equations of the precritical state and those whose solutions are used for
determining eigenvectors in the iteration process differ from equations that correspond
to the last nodes of finite-difference approximations only by coefficients, numbers m,
and vectors in their right-hand sides, hence they are solved jointly using the same com-
puter program, They are transformed in three-point finite-difference equations ( each
equation contains unknown functions only in three adjacent nodes) in four network func-
tions v, v, and M;, with symmetric matrices of coefficients and are then solved
by the method of matrix runs [4]. :

2, Determination of stress intensity gradients and of load at
stability loss by varying shell parameters, Stress intensity at any arbi-
trary point of the shell has the form of functional @ = @ (¢, X) of the finite-dim-

ensional vector of the shell variable parameters ¢ = (¢, €2, . . ., €) and of solution
X of the finite-difference equations of the precritical state , which are of the form [2 ]
A X = f (2.1)

where Ag is a symmetric matrix of coefficients; f is the load vector; X is the vector
of network functions of displacements, stresses , and moments determined at nodes of the
network of the finite-difference approximation. Matrix A,, vector f , and consequently,
also vector X depend on the shell variable parameters ¢,

Gradient @ (¢, X) is determined in terms of ¢ as follows. By varying @ (¢, X),
we obtain

oD — D, oc -+ 570X

where @, and @Dy are vectors of partial derivatives of @ with respect to com-
ponents of vectors ¢ and X, respectively, and the superscript T denotes the transposition
of a column vector to a row vector,
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Solving the system of equations
A)Y = Oy (2.2)
we obtain

3D — ®.T6c + YT 48X = DT dc + YT (8f —6A4,X) = 8c'VD

Variations &8f and 8A4o are expressed in explicit form in terms of 8¢, and the
gradient V@ of functional @ is defined in terms of ¢ as the vector of coefficients
of components of vector 8c.

Note that systems (2. 1) and (2, 2) differ only by the vectors in their right-hand
sides and are, consequently ,solved jointly on the same computer program,

The load at stability loss is determined as the smallest eigenvalue A of the finite-
difference stability equations of the form [2]

AU = ABU (2.3)

where A and B are symmetric matrices of coefficients calculated for m waves of the
shell shape along the parallel at stability loss for which A is minimum (matrix 4, in
(2.1)is the same as A when m = 0 ,and [ is the vector of Fourier series at cos
me and sin mq of increments of displacements, stresses and moments at nodes of
the finite-difference approximation at stability loss.
The variation of } is determined as the variation of the eigenvalue to which cor-
responds the unique eigenvector [/ by formula

8h = UT (84 — ASB)UNUTBU) (2.4)

Number m is not varied, since its effect on A is minimal,

Matrix B depends on stresses 1 and %2 ,and on the shell angle of rotation
in the, precritical state, which are all functions of parameters ¢y, €3, « - +y €k Vari-
ations  8y,, 8y2, 6 appear in (2,4) in the form of the scalar product ¥ 78X,
where Wx is the vector of partial derivatives of the Rayleigh ratio ¥ = UTAU /

(UTBU) with respect to components of the vector of functions of the shell precritical
state at nodes of the finite-difference approximation X,
After solving the system of equations

A =Y, (2.5)

we carry out the transformation
WA 8X = ZT 408X = ZT (8f — 84X)

and obtain 8A = 8¢TVA which is used for determining the load gradient V3, in terms
of parameters €y, €2, . . ., Cx at stability loss as the vector of coefficients at com-
ponents of vector dc..

The determination of stress intensity gradients and of load at stability loss thus re-
quires the solution of problems (2,2 ) and (2. 5) for the finite-difference equations of the
shell precritical state,

3, The optimization algorithm, We use the linearization method [1]
for shell optimization, which entails successive variation of parameters ¢y, €3y . « «5 Cis
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which may specify the shape of the shell middle surface, its thickness, m~dulus of el-
asticity, etc., whose input values are arbitrary.

We shall describe the algorithm for determining a shell whose material volume }
is minimum, with the bifurcation load P# defined as the lowest eigenvalue of the
finite-difference stability equations, is not lower than the specified pp (py > PB),
and the intensity of stresses 07 and 03 at the precritical state along the meridian and
the parallel, respectively,under load p < pp does not exceed the admissible stress

OB, i.e. 0, < Op, where g, = max ¢, 0 <{ s < §, and ¢ is the maximum in-
tensity of stresses (0,2 — 0,02 + 09%)" acrosstheshell thickness for fixed s.

Direction of the vector of increments of parameters €1, €2; « - -, C¢ at any single
step of the optimization process is determined by vector b obtained from the solution of
the following problem. Determine the maximum of (bTVf, (c) + 1/26Tb) under the
condition that

fi(e) + b7V ()<< 0, if fi(e)>max(—e, f(c) —¢&, f2(c) —e) 3. 1)

(i=1,2)
>0, H@O=52 [ne=1-20 =221

where ¢ is the considered point of values of ¢y, €3, . . ., ¢; the supemcript T de-
notes the transposition of a column vector to a row vector; kv = const is the factor
of transition to dimensionless quantities, and Oy is calculated for p = ps-
The vector of increments of parameters ¢y, €2, - . -, €k is assumed to be Ac =
b/ 2}, where i is the first of numbers 0,1, 2, ... for which the inequality

fole+ Ac) + A F (c + Ac) < fo (¢) + AF (c) — 2 (bTh)%e’
F (¢) = max (0, f1,(c), 2 (6)), o<e<t

where the number A 7> 0 must be greater than the sum of Lagrange multipliers  of
problem (3, 1), is satisfied, Numbers ky, €, and &’ determine the admissible length
of vector A¢. In numerical examples presented below these numbers were selected so
that vector & can be taken as vector Ac , which considerably reduces the volume of
calculations, From the selected point ¢ we pass to point ¢ 4 A¢ which is then taken
as the input point for the next optimization step.
Note that 04 and psare not continuously differentiable functions of €5, &, .« , ¢

If o attains its maximum value at more than one point of the shell, and the variation
of parameters ¢ in the direction determined by the gradient of o at only one point re-
sults in an inadmissible increase of ¢ at other points of the shell where it was close to

Ox- then it is necessary to impose in problem (3. 1) constraints on the increments of

¢ at such points, Similarly, in the case of bunching of the spectrum of eigenvalues of
shell stability equations around the eigenvalue of P it may be necessary to impose
caonstraints on the increments on some eigenvalues closest to that of ps» and determine
the variation of Px, taking into account all of its corresponding eigenvectors, if there
are more than one of these, In the examples considered below such refinement of the
algorithm was not necessary.

In the problem of optimization of a shell subjected to inertia forces induced by

uniformly accelerated motion (or, what is equivalent, by its own weight} we find

maxc min (g,, gs), where g, is the lowest acceleration of motion at which loss of
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shell stability takes place,and gg¢ is the acceleration at which the maximum jntensity
of stresses Oy equals the specified Og. Owing the linearity of equations of the pre-
critical state, ¢, varies in proportion to acceleration,hence g = g0OB /e %+ where
O 4 is calculated for an acceleration equal g.

Using the algorithm of minimax determination [1], we determine the direction of
an optimization step by vector b for which the quantity (p 4- 1/;6Td) is minimal with
respect to Mand ) under the condition that

file) +6" V() +p>0, if fi()<F()+e (i=1,2:e>0 (3.2)
(fr(c) = 8 (€)1 kgy f2(c) = g4 ()| kgy F(c) = min(fy(c), f2()))

where k; = const is the coefficient of transition to dimensioniess quantities, Grad -
ient g, of parameters ¢, €3, . . ., ¢, aswell as the gradient of p, in problem (3. 1),
is calculated as the gradient of the simple (notmultiple ) eigenvalue of the finite-dif -
ference equations of stability,
The vector of increments of parameters ¢y, €3, - « -+ Ck is assumed to be Ac¢ =
b/ 2%, where { is the first of numbers 0, 1, 2, . . . for which the inequality

F(c+ Ac) < F (c) — 271 (bThYre!, o< et

is satisfied ; From point ¢ we pass to point ¢ -+ Ac¢.,andsoon,
Vector b in problems (3, 1) and (3.2 ) is obtained by testing all possible solutions
by the Kuhn — Tucker condition,

4, Results of calculations, The following numerical examples illustrate
the optimization of the shape of elastic shells of revolution of constant thickness, whose
generatrices are defined by functions of the form

4

z costy-—cosy ;
— e Z Ci(i — t21+2)

N sin y e
sin ty ” )
= siny +Z gt {l—1%), 0Cit

i=1

where a is the distance of the shell middle surface from the axis of revolution; z is the
distance measured along the axis of revolution; at the shelltop ¢= 0 and ¢ = (,
while attherim t= 1,2=10, and @ = ay; coefficients 7V, ¢g, ¢, - .-, c3 are in-
dependent of & When c¢o = ¢;= ... =¢g= 0 these functions define a spherical shell.
The Poisson's ratio is assumed to be v = 0.3.

When solving equations of shell stability , the iteration process was terminated when
eigenvalues A, displacements ¥, 7, and w, and moment My, at nodes s, (n = 0,1,. ..
., 50) of the finite-difference approximation at the r-thand (r+ 1)-st iterations
satisfied inequalities of the form

50
| ACHD) 30 | < 107 A (r+1) , max Jul™Y__ (") 104 (r)
i o@gsoi " n 1< ’?;‘,olun t

where the superscript denotes the iteration ordinal number and the subscript, that of the
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node s;. The number of nodes of the finite-difference approximation 0 = s, < 5 <
e < spo = was 50 with a step (spyy —s,) / § = 0.025, 0 < n < 29; 0.015, 30 <
n < 39; 0.010, 40 < n < 49.

In the first example the volume of material of the

2
._\ ‘N 0 shell subjected to a nonuniform hydrostatic pressure of
. \/;;\‘f\ intensity ¢ (1 — 0.1 z/ ay) (coefficients g = const)
3 AV was minimized on the assumption that ¢. => ¢ and
0
. .’/
7 t 3°9° A<
-
L / J] / 7 ]
,/ A :.-/’ ‘—:_ __”____//:/’/0
’./ .~/ IV BN i m
X a/R
0 05 ~ 7 o 70 20
Fig,1 Fig.2

0, = Op for ¢ = ¢p where 7« is thevalue of ¢ at loss of the shell stability, o, is the
maximumstress intensity in the precriticalstate,, and 0 and 9 arespecified quantities.

Conditions of hinged support with all displacement components and bending mo-
ments equal zero were assumed to apply at the rim.

The optimization process was first applied to a sphericalshell of diameter R = 2a,
and thickness /== ho = ap /10 with y = 150°, ¢ = ¢;= ... =c; = 0. For such
shell ¢, = ¢, = 1.002225 E, 0, = 14.94 ¢, o5 = 0, = 0.0333 E when ¢ = ¢p. Its
generatrix is shown in Fig, 1 prior to deformation by the solid line circle segiment, in
the precritical state by the dash-dot curve O, and by the dash line at stability loss with

m = 6 in the meridional cross section where displacement in the circumferential
direction is » == 0 and a dent appears in the shell, In Figs. 1 and 2 load vectors are
indicated by arrows.

Let us now vary the shell thickness % and parameters ¢, ¢, . » ., ¢g maintaining
the internal volume and radius 2y of the shell, and angle Y constant, As the result of
optimization for nearly constant 0, and ¢« , the volume of shell material was reducedby
approximately 15% for h = 0.8481 hy, ¢ = 0.09616, ¢; = —0.02188, ¢, = —0.04606,
3 = —0.06885, ¢; = —0.08909, cg=—0.002743, c;==0.001229, ¢, = 0.01123, ¢, = 0.02393.
The shape of the last shell is shown in Fig, 1 by the dash-dot curve 1, The spectrum of
critical values of # in terms of the number m = 0,1,2, ... of waves of the shape along
the parallel at stability loss is shown in Fig, 2 for the initial spherical and the last opt~
imal shells by solid and dashed lines, respectively (¢° = 10% / E).

The optimal shape of a shell of revolution with a fixed rim (¢ = v = w = B; = 0
and s = S) subjected to inertia forces induced by uniform acceleration along the axis
of revolution 2 is determined in the second example. The shell thickness % and dis-
tance 4y are fixed,and %/ e, = 0.02. Unlike in the first example , the internalshell
volume is not fixed, The quantities V. ¢, ¢1, - - -, ¢y are varied,

An initially spherical shell is considered for which v = 30°, ¢ =¢;=... = ¢g =0,
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and 2 (0)= (2 — V'3) ay = 0.268 a,the volume of material V=1.072 nha 5%, the
maximum stress intensity in the precritical state o, = 1.735payg (p is the unit vo-
Iume mass of the material and g is the acceleration of the shell motion), and the low-
est ¢ at which stability loss occurs in 8 = 0.006141 E / (pay). It is assumed that the
maximum stress intensity Op of this shell occurs when g = g; = £« hence 0p =
1.735 pg.ay = 0.01065 E.

as

azs
17 a5 f
Fig.3
! |='_—;.—;.—_':‘:::_~_-:_._\_'_<
O/Cyett) H \\/4 g
o
as
o .50
Fig.4

The shell whose generatrix isshownin Fig, 3 by the solid curve was determined with the
use of the optimization algorithm described in Sect, 3, Forthisshell ¥ == 32.7°, ¢ =
0.09529, ¢; = 0.03703, ¢ = 0.03479, ¢g = 0.04321, ¢, = 0.05348, ¢; == —0.03405, ¢ =
~—0.03204, ¢; —0.02330, ¢y = —0.04369. The volume of its materialis by approximately
20% greater than that of the initial sphericalshell, The maximumstressintensity 0, =
0.7505 pga,y and the lowest acceleration at which stability loss occurs gy = 0.01685 E /
(pay). Stress 0, reachesthe maximum admissible value 0p, before loss of shell stability
takes place, at acceleration g5 = 0.0142 E / (pa n) which is more than twice higher than
the acceleration g =0.006141 E / (pay) admissible forthe initialsphericalshell,

Shapes of the optimal shell generatrix areshownin Fig, 3 by the dash-dot curve O for
the precriticalstate and by the dash curve atstabilityloss (m = 1) . Thespectum of
critical accelerations £ thatcorrespond tostability losswith m= 0,1,2, ... wavesalong
the parallelis shownin Fig, 2 by curve 1 (¢ =102 gpay, / E) , while the lowercurve 0
defines that spectrum for the initial spherical shell,

The maximum stress intensity o as a function of the shell thickness s for the initial
spherical and the optimized shells inthe subcritical state isshown in Fig, 4 by curves Oand
1, respectively . Optimization obviously leads toa smoothing of distribution of ¢ along
the shell length,

The stressed state of the optimal shell is close to the zero-moment state. In Fig. 4
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the dash-dot and the dash lines show the ratio © of stress intensity at the shell middle
surface to its maximum value across the shell thickness as a function of s for the initial
spherical and the optimal shells, respectively .,

It should be noted that in these examples the obtained shells are sensitive to devi-

ations from their shape. Thus in the last example the admissible acceleration g = g, =

0.00747 E | (pay) for the shell obtained by an additional variation of the optimum
shell parameters, shown in Fig, 3 by the dash-dot curve 1, is half of that for the shell
taken as optimal shown in that figure by the solid line. In that case loss of stability
takes place at acceleration gy =0.0105 E / (pay}. Hence the possibility of actual re-
duction of the maximum stress intensity and of stability improvement of shells considered
above by varying their shape is insignificant,
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